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Subcortical structures play a critical role in brain function. How-
ever, options for assessing electrophysiological activity in these
structures are limited. Electromagnetic fields generated by neu-
ronal activity in subcortical structures can be recorded nonin-
vasively, using magnetoencephalography (MEG) and electroen-
cephalography (EEG). However, these subcortical signals are much
weaker than those generated by cortical activity. In addition, we
show here that it is difficult to resolve subcortical sources because
distributed cortical activity can explain the MEG and EEG patterns
generated by deep sources. We then demonstrate that if the corti-
cal activity is spatially sparse, both cortical and subcortical sources
can be resolved with M/EEG. Building on this insight, we develop
a hierarchical sparse inverse solution for M/EEG. We assess the
performance of this algorithm on realistic simulations and audi-
tory evoked response data, and show that thalamic and brainstem
sources can be correctly estimated in the presence of cortical activ-
ity. Our work provides alternative perspectives and tools for char-
acterizing electrophysiological activity in subcortical structures in
the human brain.
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Deep brain structures play important roles in brain function.
For example, brainstem and thalamic relay nuclei have a cen-

tral role in sensory processing (1, 2). Thalamocortical and hip-
pocampal oscillations govern states of sleep, arousal, and anes-
thesia (3–8). Striatal regions are crucial for movement planning,
while limbic structures like the hippocampus and amygdala drive
memory, emotion, and learning (9–13). Altered signaling within
the thalamus, striatum, hippocampus, and amygdala underlies
pathologies such as autism, dementia, and depression (14). Much
of our understanding of subcortical function comes from lesion
studies and invasive electrophysiological recordings in animal
models. Improved tools to characterize subcortical activity in
humans would make it possible to analyze interactions between
subcortical structures and other brain areas and could be used to
better understand how subcortical activity relates to perception,
cognition, behavior, and associated disorders.

At present, techniques for characterizing deep brain dynam-
ics are limited. Invasive electrophysiological recordings (15) in
humans are generally limited to regions that need to be moni-
tored for clinical purposes. Functional magnetic resonance imag-
ing (fMRI) can noninvasively measure deep brain activity with
a spatial resolution of up to ∼1−2mm, but cannot record fast
signals or oscillations. Magnetoencephalography (MEG) and
electroencephalography (EEG) noninvasively measure fields
generated by neural currents with millisecond-scale temporal
resolution (16), and M/EEG source estimation (17) is widely
used to spatially resolve neural dynamics to within∼0.5−2 cm in
the cerebral cortex (18–21). However, it remains an open ques-
tion whether M/EEG can be used to estimate neural currents in
deep brain structures.

The anatomy of deep brain structures poses significant chal-
lenges for source estimation with M/EEG. Subcortical structures
produce smaller scalp M/EEG signals because subcortical struc-
tures are farther from the scalp than cortical structures. In addi-
tion, neurons in subcortical structures can have a closed-field
geometry that further weakens the fields observed at a distance
(22). A second, perhaps more fundamental problem is that sub-
cortical structures are enclosed by the cortical mantle. Thus,
measurements arising from activity within deep brain structures
can potentially be explained by a surrogate distribution of cur-
rents on the cortical surface. This implies that it would be very
difficult to estimate subcortical activity when cortical activity is
occurring simultaneously.

Clearly, if the scalp M/EEG signals generated by subcortical
structures are too small to measure, it is not possible to esti-
mate subcortical sources. But in many cases, subcortical sources
do generate measurable scalp signals, and in these cases it might
be possible to estimate those sources, if only their fields could be
distinguished from those generated by cortical sources. In many
neuroscience studies, salient cortical activity can be restricted
to a set of well-circumscribed areas (23, 24). We introduce the
hypothesis that if the cortical generators are sparse in this sense,
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it might be possible to uniquely recover both the cortical and sub-
cortical sources.

In this paper, we analyze M/EEG field patterns generated by
cortical and subcortical sources and assess the extent to which
sparse cortical and subcortical sources can be distinguished. We
then introduce a hierarchical sparse estimation algorithm to
illustrate how we can capitalize on these concepts to character-
ize both cortical and subcortical activity. We demonstrate the
algorithm’s performance on simulated and experimental M/EEG
data containing both cortical and subcortical activity.

Theory
Neural Sources and M/EEG Fields. Primary neural currents (25),
usually modeled with an ensemble of current dipoles, generate
M/EEG fields Y,

YN×T = GN×M XM×T + VN×T , [1]

where G is the gain matrix determined by the quasistatic approx-
imation of Maxwell’s equations, X contains the amplitudes of the
current dipole sources, V is the noise, N is the number of sen-
sors, M is the number of sources, and T is the number of time
points measured. To simplify notation, we assume that the data,
the gain matrix, and the noise in Eq. 1 have been whitened to
account for the spatial covariance QN×N of the actual observa-
tion noise (26), so that V is Gaussian with zero mean and identity
covariance matrix IN×N . When T = 1, we use notations y and x
in lieu of Y and X.

We use high-resolution structural MRIs from healthy vol-
unteers to delineate cortical surfaces and subcortical anatomic
regions to define the locations and orientations of the elemen-
tary dipole sources (Materials and Methods). We place sources
on cortical surfaces and in subcortical volumes and cluster proxi-
mal groups of dipoles into surface patches or volume subdivisions
sized to homogenize signal strengths (Materials and Methods; Fig.
1 A and B; and SI Appendix, section SI I and Fig. S1). The result-
ing set B of K patches and subdivisions, together called divisions,
constitutes the distributed brain source space.

We can then group the columns of G and rows of X according
to these divisions and rewrite Eq. 1 as

YN×T =

K∑
k=1

GkXk + VN×T , [2]

where Gk and Xk denote the gain matrix and source currents
within the k th division, respectively. We compute Gk for each
division k in B and decompose it into a set of eigenmodes (Mate-
rials and Methods). We denote gain matrices and source currents
for a set of divisions F ⊂ B by GF = {Gk} and XF = {Xk} ∀k ∈
F , respectively. Fig. 1 C and D illustrates field patterns for one
cortical and one subcortical division.

Fields Generated by Subcortical Sources Can Be Explained by Currents
on the Cortex. To analyze distinctions between subcortical and
cortical fields, we investigated the extent to which MEG field
patterns arising from subcortical currents can be explained by
cortical surrogates.

We simulated field pattern yV corresponding to unit current
in the VPL thalamus (Fig. 2 A and B) and assessed whether
yV could be explained by some distribution of cortical source
currents. Specifically, we fitted the subcortical field pattern with
cortical sources; i.e., we computed the cortical minimum-norm
estimate to explain yV . We found that the resulting currents are
small and broadly distributed across several cortical patches (Fig.
2C). Further, the goodness of fit between the field pattern for
the cortical estimate (Fig. 2D) and yV was 98.5%, showing that
GV can be explained by some combination of sources in the full
dense cortical space.

A C

B D

Fig. 1. Illustration of source spaces and field patterns. (A) Cortical source
space C comprising patches (sized 650 mm2) on the gray–white matter sur-
face interface. (B) Subcortical source space S comprising volume subdivi-
sions (sized 175−1,800 mm3) in the caudate, putamen, amygdala, thalamus,
brainstem, and surface patches (sized 47 mm2) on hippocampus. (A and B)
The set of cortical and subcortical divisions B= C ∪S forms the full dis-
tributed source space. (C and D) Example of noiseless MEG field pattern
arising from activity in a frontotemporal cortical patch and a brainstem sub-
division, respectively (white asterisks in A and B). Inflated surfaces and field
maps have a left–right convention opposite to the MRI views. (C vs. D) Cor-
tical fields tend to have more focal spatial patterns, while subcortical fields
tend to be more distributed.

Analysis of Forward Solutions. To generalize the above result,
we used principal angles (27, 28) to characterize the relation-
ship between the cortical and subcortical field patterns. Principal
angles quantify the correlation between linear subspaces, in this
case the space spanned by MEG fields arising from sources in dif-
ferent cortical and subcortical regions. For the example in Fig. 2,
the maximum principal angle between subspaces spanned by the
subcortical and cortical gain matrices was 0◦. Further, the maxi-
mum principal angle between any subcortical gain matrix and the
cortical gain matrix was 0◦. We conclude that the presence of the
full cortical source space makes it impossible to unambiguously
estimate currents in simultaneously active subcortical sources.

Sparsity Makes It Possible to Distinguish Fields from Subcortical and
Cortical Sources. We next studied the extent of subspace corre-
lation when subcortical sources are active together with only a
small subset of cortex. As an example, we examined the scenario
of median-nerve somatosensory stimulation, which elicits activity
in ventroposterolateral (VPL) thalamus, primary and secondary
sensory cortices (S1, S2), and posterior parietal cortex (PPC)
(29), and analyzed forward solutions for a source space encom-
passing these brain areas (Fig. 3A).

Specifically, we considered all possible configurations of sub-
cortical and cortical currents in these divisions, computed prin-
cipal angles between the subcortical and cortical gain matri-
ces corresponding to each possible configuration (Materials and
Methods), and plotted the distribution of angles (Fig. 3B). A
large proportion of the principal angles are high (median 43.9◦),
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Fig. 2. Fields generated by subcortical sources can be explained by currents
on the cortex. (A and B) Example of unit source current in left ventropos-
terolateral (VPL) thalamus (sized 1.5 cm3) and the corresponding noiseless
MEG field pattern. (C and D) Distribution of currents on cortical surface
patches (sized 650 mm2) that reproduce the MEG field pattern generated
by the subcortical source. C and D show the fitted cortical currents and
MEG field pattern. The source current plots in A vs. C are the resultant
currents from dipoles within a subdivision. The field maps in B and D
are normalized. The fitted cortical field pattern is indistinguishable from
the simulated subcortical pattern. This analysis illustrates how a subcor-
tically generated field can be explained by some distribution of corti-
cal currents.

indicating that many different configurations of activity within
the sparse cortical and subcortical divisions can be distinguished
from one another. We also computed principal angles for all
mutually exclusive configurations of activity within the corti-
cal divisions in Fig. 3A and found comparable principal angles
(median 63.5◦). Therefore, in principle, the problem of dis-
tinguishing subcortical sources from sparse cortical sources is
similar in difficulty to that of distinguishing sparse cortical
sources from one another. We also illustrate typical subcorti-
cal and cortical field patterns (Materials and Methods) for source
current configurations corresponding to the various angles in
this distribution (Fig. 3 C and D). Subcortical and cortical
field patterns with principal angles as low as 45◦ are clearly
distinguishable.

This example represents a conservative scenario, but illus-
trates an approach for characterizing the extent to which sub-
cortical sources can be resolved for any given cortical source dis-
tribution. We also found similar trends for other more general
cases (SI Appendix, section SI II and Figs. S2 and S3). These
results lead us to conclude that spatial sparsity constraints
can enable distinctions between cortical and subcortical field
patterns. Based on this analysis, we introduce and test an
inverse algorithm that uses a sparse cortical representation
to achieve localization of simultaneous subcortical and corti-
cal activity.

Inverse Algorithm
Electromagnetic Inverse Problem. The electromagnetic inverse
problem is to estimate source currents X underlying M/EEG data
Y, given forward gain matrix G for divisions distributed across the
brain. This inverse problem is commonly solved using the linear
l2 minimum-norm estimator (MNE),

X̂(G, Y) = WMNE(G)Y, [3]

where X̂(G, Y) is an estimate of X, and the MNE estimator WMNE

is a function of G. The performance of WMNE can be assessed
using the resolution matrix

K(G) = WMNE(G)G. [4]

The ideal K = I corresponds to a WMNE which exactly recov-
ers the current locations and amplitudes, in the absence of noise
(30). In practice, source estimates are biased and more extended
than the true sources. This nonideal behavior can be analyzed
using the spatial dispersion (SD) and dipole localization error
(DLE) metrics (31) (Materials and Methods), which indicate how
far the inverse solution for a given source spreads from the actual
source location. We analyze the performance of the MNE on the
subcortical and cortical source estimation problems and describe
our proposed inverse algorithm.

Estimation Performance—Distributed Cortical and Subcortical Sources.
We first considered the problem of estimating neural currents in
a set of divisions B distributed across both cortical and subcorti-
cal structures in the brain (Fig. 4A). Fig. 4B shows the MNE res-
olution matrix KMNE(GB). We found that estimates for the corti-
cal sources concentrate around the diagonal (Fig. 4B, upper left),
implying good resolution for cortical sources. On the other hand,
estimates for subcortical sources have low amplitudes on the
diagonal and instead spread to cortical sources (Fig. 4B, upper
right and lower left). Fig. 4C shows the distribution of SD and
DLE across all divisions. The median SD is 4.23 cm (close to
the radius of the human brain), and the median DLE is 1.89 cm.
The cortical DLE is ∼0.5 cm and the subcortical DLE is in the
2- to 3-cm range. These findings are consistent with our principal
angle analyses (Fig. 2).

Estimation Performance—Sparse Cortical and Distributed Subcorti-
cal Sources. Earlier we found the principal angles improve when
only sparse subsets of cortical sources are active alongside deep
sources (Fig. 3). Therefore, we assessed whether the resolution
of the MNE inverse solution improves similarly. We considered
the somatosensory stimulation example from Fig. 3 and con-
structed a composite source space Br comprising the sparse cor-
tical divisions in Fig. 3A alongside all subcortical divisions (Fig.
4D). Fig. 4E shows the MNE resolution matrix KMNE(GBr ). We
see that the estimates for subcortical sources do not spread sig-
nificantly to the cortex (Fig. 4E, low values for upper right and
lower left). However, the estimates for subcortical sources tend
to spread across the subcortical source space (Fig. 4E, lower
right, off-diagonal portions). Fig. 4F shows the resolution error
metrics across all divisions in Br . The median SD is 2.10 cm, and
the median DLE is 0.805 cm. This is an improvement from the
previous case, but still not as accurate as needed to resolve many
subcortical sources. Given a sparse cortical source space as a
starting point, we anticipate that it might be possible to use a
subsequent sparse estimation step to reduce spread among sub-
cortical sources.

Estimation Performance—Sparse Cortical and Sparse Subcortical
Sources. Sparse estimation procedures based on l1-norm mini-
mization, projection pursuit, and/or Bayesian theory are effec-
tive at pruning out spurious features, while identifying relevant
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A
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Fig. 3. Sparsity makes it possible to distinguish fields from subcortical and cortical sources. (A) Sources of activity derived from stimulation of the right
median nerve: left VPL thalamus, primary and secondary somatosensory areas (S1, bilateral S2), and posterior parietal cortex (PPC). (B) Normalized histogram
of principal angles, which quantify the correlation between fields arising from all representative combinations of activity within this neurophysiological
source space. The orange histogram shows the distribution of subcortical vs. cortical angles, while the green histogram shows the distribution of cortico-
cortical angles. (C) MEG field pattern resulting from activity in VPL thalamus. (D) Representative fields from example cortical source sets, whose gain matrices
have the indicated principal angles with the subcortical gain matrix, that best fit the subcortical field pattern in C. All field map color scales are normalized
to emphasize the spatial patterns. The spatial profiles of the cortical and subcortical MEG field patterns are distinct, even for a principal angle of 30◦, and
substantially so for principal angles >45◦. These distinctions suggest the feasibility of resolving simultaneous subcortical and cortical activity.

sparse features in noisy high-dimensional problems (32–35). We
have recently shown that subspace pursuit can accurately esti-
mate multiple sparse cortical sources underlying MEG data (36).
Thus, we assessed whether a similar subspace pursuit algorithm
could reduce the spread among spurious subcortical sources and
enable improved resolution for subcortical source estimates.

We continue with our analysis of the resolution matrix in the
composite source space Br (Fig. 4G, faded background), this
time with subspace pursuit. Since the subspace pursuit algo-
rithm is nonlinear, a closed-form resolution matrix in the sense
of Eq. 4 does not exist; thus the performance of subspace pur-
suit must be characterized empirically instead. To this end, we
simulated unit currents xi in each i th division Br (i) within Br ,
one at a time, to generate corresponding noiseless field patterns
yi = GBr (i)xi . Then, for each yi , we performed subspace pursuit
and constructed an empirical resolution matrix KSP(GBr ) (Mate-
rials and Methods). The resulting matrix, shown in Fig. 4H, has
a near-diagonal structure for the majority of cortical and sub-
cortical sources. Moreover, Fig. 4I shows SD and DLE, across
all divisions in Br . The median SD and DLE are the same and
equal to 0.737 cm. This is a substantial improvement over previ-
ous solutions that do not use sparsity constraints (Fig. 4H vs. Fig.
4 C and E).

Hierarchical Subspace-Pursuit Inverse Algorithm. The above results
suggest that it is possible to resolve both cortical and subcortical
sources by applying sparsity in both domains. In previous work,
we developed a sparse estimation algorithm for cortical divisions
(36), in which sets of cortical divisions were nested in successively
finer resolutions (i.e., smaller patches or divisions), and subspace
pursuit was applied to derive sparse estimates in successively
finer resolutions, which formed a hierarchy from coarse to fine
resolution. We therefore intuited that subcortical sources could
be viewed as an additional, ultimate step in this hierarchical
refinement process, achieved by adding a set of subcortical divi-

sions to the final set of sparse cortical sources and applying sub-
space pursuit.

Inverse Algorithm. Inputs: Data Y, distributed gain matrix GB,
and target sparsity level L.
Notation: Denote the distributed cortical and subcortical source
spaces as BC andBS ⊂B, respectively. Denote Hr ⊂Br as the
set of L brain divisions whose estimated neural currents X̂Hr best
explain data Y.

1. Do subspace pursuit on the distributed cortical source space
BC : [HC , X̂HC ] = SP (Y, GBC , L).

2. Construct BC ,refined = HC ∪ neighbors ofHC in a finer sub-
division of cortical patches.

3. Repeat subspace pursuit on the coarse-to-fine hierarchy
of cortical source spaces BC ,refined: [HCsp , X̂HCsp

] = SP(Y,
GBC ,refined ,L).

4. Construct the composite space of sparse cortical sources and
distributed subcortical sources: Br = [HCsp ∪ BS ].

5. Repeat subspace pursuit on the composite sparse space Br:
[Hr, X̂Hr ] = SP (Y, GBr , αL), where α >1.
Outputs: Cortical and subcortical source locations H = Hr ⊂
[1, 2, . . . ,K ]; and the estimated time courses of neural currents
at these locations X̂H = X̂Hr .
Subspace pursuit (steps 1, 3, and 5). For a source space compris-
ing a subset of brain divisions F ⊂B with gain matrices GF , sub-
space pursuit (SP) estimates the locations and time courses of
neural currents to explain data series YN×T :

[H, X̂H] =SP (Y, GF , L). [5]

The pursuit procedure finds a sparse subset of dictionary GF
that best explains data Y, computes residuals remaining to be
explained, and iterates to find new relatively uncorrelated sub-
sets of GF that best explain these residuals, until all matching
subsets of GF are found (34–36) (SI Appendix, section SI III).
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Fig. 4. An analysis of how sparsity and hierarchy influence subcortical source estimation. (A) Illustration of all brain divisions considered. (B) Minimum-
norm estimator (MNE) resolution matrix for the source space in A. (C) Summary dispersion and error metrics for the resolution matrix in B. Cortical estimates
concentrate around the diagonal (low localization error), whereas subcortical estimates spread significantly to the cortex (high spatial dispersion). (D) A
reduced space composed of sparse cortical regions that generate somatosensory evoked potentials combined with all subcortical volumes. (E and F) MNE
resolution matrix and associated performance metrics for the reduced source space in D. The sparse subset of the cortical source space allows subcortical
activity to be estimated, albeit with significant spread to nondiagonal regions. (G) Final sparse cortical and subcortical source regions identified using an
inverse solution employing sparsity constraints. The faded subcortical regions show the hierarchically reduced subcortical source space, while the foreground
subcortical regions show estimated sources in the thalamus. (H and I) Empirical resolution matrix (one active source per column) and associated performance
metrics for the sparse solution. Estimates mostly concentrate on and around the diagonal for both cortical and subcortical sources. B, E, and H show left/right
(l/r) cortex (l/rco), hippocampus (r/lh), amygdala (r/la), putamen (r/lp), caudate (r/lc), thalamus (r/lt), and brainstem (bs). All resolution matrices order sources
based on physical proximity. Therefore, when sources are estimated accurately, the resolution matrix has a diagonal appearance. The blue boxes are used
to delineate the position of the cortical, left thalamic, and right caudate sources in the resolution matrices. The changes in the color-scale range highlight
the 3−10× increase in recovered source amplitude when sparse estimation is applied across progressively refined hierarchies. Overall, hierarchical sparsity
enables focal spatial resolution with minimal dispersion (or point spread) for inverse solutions incorporating both cortical and subcortical sources.

Hierarchical construction (steps 2 and 4). We first apply SP on a
distributed cortical source space to identify the subset of cortical
divisions that best explain the measured fields. Then, to improve
accuracy of this sparse subset of cortical sources, we perform SP
across a coarse-to-fine hierarchy of cortical source spaces (36)
(SI Appendix, Fig. S4). Subsequently, we construct a composite
space of the sparse cortical source estimates and distributed sub-
cortical sources and use SP on this composite sparse space to
identify the subset of subcortical and cortical sources that best
explain the data. This process of using sparse estimation across
increasingly refined hierarchies enables systematic reduction of
the distributed source space and the gain matrix: pruning out
sources not important for explaining the data, implicitly decor-
relating the columns of the gain matrix, and concentrating esti-
mates into subsets of the brain whose neural currents best explain
the data. Overall, given data Y, distributed gain matrix GB, and
target sparsity level L, the hierarchical SP algorithm identifies

the sparse subset H that specifies locations for both cortical and
subcortical sources and estimates the time courses XH of neural
currents at those locations.

Data Examples
We illustrate the performance of the algorithm by analyzing
noisy evoked response simulations and experimental data. First,
we preprocess the measurements Y and estimate the noise
covariance matrix Q. Next, we use the MRI data to construct the
distributed source space, i.e., brain divisions B, and compute the
forward solutions GB. Then, we use the hierarchical SP inverse
algorithm to estimate the locations and time courses of sources
that best explain the M/EEG data. We perform all data analyses
at the individual subject level. We specify the target sparsity level
L for SP empirically, based on a conservative approximation of
the expected number of active divisions. We maintain L across
the cortical hierarchies and increase it by a factor of α ∼ 1.5−2
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for the final hierarchy, i.e., the composite hybrid source space
Br comprising sparse cortical sources and distributed subcorti-
cal sources. Estimates displayed in this section are obtained at
the final hierarchy level Br . We note that L specifies the number
of eigenmodes included in the sparse solution and that currents
from a given patch or subdivision may be represented by more
than one eigenmode. As a result, the number of subdivisions seen
on the topographical maps may be less than L.

Somatosensory Evoked Simulations. We simulated MEG evoked
responses mimicking those elicited by electrical stimulation of
the right median nerve at the wrist. Fig. 5 A and B illustrates
the spatial and temporal features of simulated fields in the sen-
sor space. The simulated fields include additive Gaussian noise,
with a signal-to-noise ratio (SNR) of 7 dB, similar to resting eyes-
open recordings. Fig. 5 C and D display the spatial and tempo-
ral patterns of simulated currents in the source space. Specifi-
cally, the evoked responses comprise early currents in the left
somatosensory region of thalamus (L Som Th), followed by cur-
rents in the left primary somatosensory cortex (L S1, near the
postcentral gyrus), and later currents in the left PPC (L PPC)
and bilateral secondary somatosensory cortices (L/R S2). The
simulated thalamic current time course has a periodic on/off pat-
tern up to 250ms poststimulus. This pattern was chosen to assess
source estimation performance for the challenging case of pha-
sic, temporally overlapping subcortical and cortical activity. We

A

B D F

C E

Fig. 5. Sparse hierarchical estimates recover simulated somatosensory responses. (A and B) Spatial distribution and time courses (one color per channel)
of simulated MEG fields in sensor space. (C and D) Spatial distribution and time courses of simulated source currents in source space. Inflated views show
sources located in somatosensory (S1, S2) and parietal (PPC) cortices. MRI views show thalamic source locations. The sagittal section passes through the left
thalamus. The somatosensory thalamus (Th) is activated in a periodic on/off pattern. (D vs. B) While the cortical source currents contribute large-amplitude
MEG signals, fields due to thalamic sources are not visible above the simulated noise. (E and F) Spatial distribution and time courses of estimated source
currents in the source space. All topographical snapshots are at 84 ms (top gray arrows in time-course plots), the color scales and slice locations are the same
in C–E, and all source currents are plotted in terms of the resultant magnitudes across dipoles within each region in the key. (E and F vs. C and D) Estimated
source locations and time courses closely match the simulated ground truth. The thalamic source estimate follows the true phasic on/off pattern. Although
there is a stray source estimate in right thalamus, it is weak and relatively constant over time. In SI Appendix, Figs. S6 and S7 compare the performance of
our algorithm to alternatives that do not use sparsity and hierarchy.

note that the MEG fields arising from thalamic source currents
(e.g., 0−15ms in Fig. 5B) lie below the observation noise and
are significantly smaller than those arising from cortical currents
(e.g., 70−100ms in Fig. 5B).

For source estimation, we used a source space different from
that used for the simulation, to recreate a scenario closer to what
might occur in practice, in which the true generating sources and
the source space parcellation might not correspond. We set the
sparsity level L to 8 and 12 for the cortical and hybrid hierarchies,
respectively. The procedure refines source current estimates
across cortical hierarchies (SI Appendix, Fig. S5) and culminates
in the final hybrid hierarchy Br . The final spatial distributions
and time courses of estimated source currents (Fig. 5 E and F)
closely resemble those of the simulated ground truth (Fig. 5 C
and D) for both cortical and subcortical sources. The estimated
left thalamic time course in Fig. 5F matches the simulation in
shape and phase and further is not contaminated by leakage from
cortical sources.

Further, we found that our algorithm offers significant gains
in performance compared with other methods that do not use
principles of sparsity and hierarchy (SI Appendix, Figs. S6 and
S7). We conclude that both sparsity and hierarchy are necessary
to accurately resolve locations and time courses of the thalamic
source currents (SI Appendix, Fig. S6). Further, using sparsity in
a hierarchical fashion helps recover the true distribution of mean
source activity across anatomic regions (SI Appendix, Fig. S7).
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Auditory Evoked Response Experiments. We recorded auditory
evoked responses elicited by binaural stimulation with a train of
clicks (37, 38) during the resting eyes-open condition simulta-
neously with MEG and EEG. Auditory responses comprise dis-
tinct M/EEG peaks at established latencies corresponding to a
progression of activity from the cochlea, through the inferior col-
liculus in the brainstem, to the auditory cortex (37), and thus
serve as a suitable test case for validating a subcortical source
estimation algorithm.

The M/EEG evoked responses are shown in Fig. 6 A and B.
We see early auditory brainstem response (ABR) peaks in both
EEG and MEG at 5.8ms and 6.2ms, a low-amplitude Po fea-
ture in the EEG at ∼10ms, and prominent midlatency response
(MLR) peaks Na-Pa in MEG and EEG channels at 18−25ms
poststimulus. The ABR peaks are consistent with the brainstem
wave V known to arise from the inferior colliculus (IC), the Po
feature marks the end of brainstem components, and the Na-
Pa peaks correspond to cortical responses known to arise in the
auditory cortex (37).

We performed hierarchical SP and set sparsity levels L to 4
and 8 for the cortical and hybrid hierarchies, respectively. Fig. 6
C and E shows localization of the 18- to 25-ms Na-Pa MLR peaks

A C E

B D F

Fig. 6. Cortical and subcortical source estimates for evoked auditory responses. Stimulus-locked average auditory evoked responses were recorded from a
healthy volunteer presented with a broadband click train stimulus. Time courses are averages across 11,170 epochs filtered between 500 Hz and 1,625 Hz for
the auditory brainstem response (ABR), and between 30 Hz and 300 Hz for the middle latency response (MLR). (A) MLR time courses displayed across chan-
nels, one color per channel. Red labels denote common peaks occurring at the expected poststimulus latencies. The Na and Pa peaks (shaded gray section) are
particularly prominent. (B) ABR time courses rectified and averaged across channels. The shaded gray section marks the 5.0- to 6.5-ms period poststimulus,
when peaks consistent with ABR wave V appear in the recordings. (C and E) Sparse cortical estimates for middle-latency recordings (30−300 Hz): snapshots
at 25 ms (top black arrow, E). The activity is localized to the Heschl’s gyrus and superior temporal gyrus, consistent with auditory cortical processing. The
source time courses from these areas have peaks consistent with the Na and Pa peaks in the scalp recordings in A. (D and F) Sparse hierarchical estimates
for early-latency recordings (500−1,625 Hz), obtained using a source space comprised of sparse subsets of cortex in C and the distributed subcortical space.
The spatial plots display the source activity at 5 ms (top black arrow, F). The activity is localized primarily to the inferior colliculus. A weak stray source is
also seen in right amygdala. The brainstem source time courses show peaks consistent with the ABR wave V peaks in B. The color scales and slice locations
are maintained for topographical snapshots across C and D, and all source currents are resultant magnitudes across dipoles within each region in the key.
The color scales in C and D have units nAm and 0.1 nAm, respectively. Overall, our sparse hierarchical algorithm recovers cortical and subcortical sources
consistent with the auditory stimuli presented. SI Appendix, Fig. S10 compares the performance of our algorithm to alternatives that do not use sparsity
and hierarchy.

to bilateral auditory cortices and the associated time courses.
The auditory areas compose the reduced cortical source space,
which, along with the distributed subcortical sources, forms the
hybrid source space Br for estimation of deep sources underlying
the ABR data. Fig. 6 D and F illustrates the localization of the
wave V ABR peaks to bilateral ICs. Although the recorded wave
V peaks do not have very high SNR, the source time course at
the IC peaks at ∼5−6ms and drops off after 10ms, as expected.
Consistent results in another subject are shown in (SI Appendix,
Fig. S9). We compared performance to algorithms that do not
use sparsity and hierarchy (SI Appendix, Fig. S10) and found
that hierarchical SP is necessary to estimate specific subcortical
sources even for filtered recordings containing temporally sepa-
rated early latency responses.

Discussion
The extent to which subcortical activity can be estimated from
M/EEG measurements has been a controversial subject. Our key
finding is that the M/EEG fields from subcortical sources can
be distinguished from those generated by the cortex when the
underlying cortical activity is sparse, i.e., limited to a subset of
cortical regions. In this scenario, the problem of distinguishing
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subcortical from cortical sources has a similar level of ambiguity
to that of resolving different cortical sources. To demonstrate
how this insight might be practically applied, we developed a
sparse hierarchical algorithm to estimate both sparse cortical and
subcortical sources.

It is known that deep and superficial sources exhibit different
M/EEG field patterns (39), but the degree to which this infor-
mation could be used to resolve multiple distributed subcorti-
cal and cortical sources has remained unclear. Analyses of cor-
tical and subcortical field patterns assuming that entire structures
can be simultaneously active have provided evidence for substan-
tial correlation (40), consistent with our Fig. 2. However, we rea-
soned that it would be unlikely to observe synchronous activity,
the major determinant of MEG/EEG (41), simultaneously within
the entirety of cortex and any given subcortical structure. Thus, we
analyzed sparse subdivisions of cortical and subcortical structures
and found clear distinctions in the ensuing field patterns (Fig. 3).
Although previous work and the data presented here show that
cortical and subcortical sources cannot, in general, be unambigu-
ously resolved, we found that if the distribution of cortical and
subcortical sources is sparse, the problem becomes tractable.

These observations motivated us to create a hierarchical SP
inverse algorithm to find the set of sparse cortical and subcorti-
cal sources that best explain the M/EEG data. Our analyses of
various source estimators (Fig. 4) showed that our algorithm has
a performance superior to alternatives for the subcortical struc-
tures and similar to existing approaches for the cortical structures
(36, 42–45).

If the locations of activity in cortical and subcortical structures
are known, and each active area can be modeled with an equiv-
alent current dipole, linear least squares can be used to estimate
source current time courses (46, 47). However, fitting the loca-
tions of multiple dipolar sources usually requires tailored and
often interactively guided fitting strategies. Our approach, on the
other hand, automatically finds the constellation of sources in a
variety of conditions, including those where the source activities
may overlap in time. Further, instead of isolated current dipoles
we use concise distributed dipole representations within rele-
vant subcortical anatomical subdivisions. Other methods, such
as magnetic field tomography (48) and the linearly constrained
minimum-variance beamformer (49, 50), that have been applied
to locate deep sources implicitly, use some of the principles
we formalize here. Our analyses on simulated and experimen-
tal data show that algorithms using both sparsity and hierarchy
can resolve simultaneously active cortical and subcortical sources
under realistic low SNR conditions (Figs. 5 and 6).

Our algorithm relies on being able to specify, at least approx-
imately, the sparsity level L for the cortical and subcortical
sources. This parameter can be set based on domain knowledge
of the number of expected sources. In this work, we chose con-
servative values for L exceeding the true or expected level of
sparsity and found that the algorithm performed well. In cases
where prior domain knowledge does not reasonably exist, formal
model selection methods such as cross-validation could be used
to choose L. Several recent publications have proposed sparsity-
based algorithms for M/EEG cortical source estimation (20, 21,
36, 51–61). These and other methods (62) might also be applied
in a hierarchical fashion to estimate both cortical and subcortical
sources. Further, techniques using distributed sparse represen-
tations and dynamical sparsity constraints could be used to esti-
mate subcortical sources in conditions involving more extended
areas of cortex (63, 64).

Our analysis implies that sparsity is not merely an assump-
tion, but rather a crucial requirement for cortical and subcortical
sources to be jointly estimated. The key question to answer is the
extent to which the cortical fields can be distinguished from those
of potential subcortical sources. Since the cortical areas that par-

ticipate will vary according to the task, fulfillment of this require-
ment must be evaluated on case-by-case basis. Notably, even in
complex cognitive tasks such as picture naming (23) and viewing
or mimicking of lip forms (24), salient activity can be limited to
a small number of regions. In each of these regions the source
may be focal (well represented by a dipole) or extended (a corti-
cal patch). The methods we have presented in this paper illustrate
one approach for characterizing the extent to which subcortical
activity can be recovered using M/EEG.

Materials and Methods
MRI and M/EEG Acquisition. We acquired MRI and M/EEG data from four
healthy subjects aged 25−45 y. All subjects provided written informed con-
sent. All studies were approved by the Human Research Committee at Mas-
sachusetts General Hospital. Data from one subject were used for the prin-
cipal angles analysis and simulations. We recorded auditory evoked fields
in three other subjects. In one subject, technical problems made the data
unusable. For each subject, we obtained T1-weighted structural MRI, a 306-
channel MEG, and a 70-electrode EEG recording (SI Appendix, section SI I).

Source Space Construction. We used FreeSurfer to reconstruct neocortical
and hippocampal surfaces and segment subcortical volumes from the MRI
(65–67). We placed dipoles with orientations normal to the triangulated
surface mesh for neocortex and hippocampus at the gray–white matter
interface, with ∼1 mm spacing. We placed triplets of orthogonal dipoles
in subcortical volumes covering the thalamus, putamen, caudate, brainstem
(midbrain), and amygdala, at ∼1 mm voxel spacing. To reduce the dimen-
sionality of the source space, we grouped neighboring cortical dipoles into
“patches” (68–70). We grouped neighboring subcortical dipoles into “sub-
divisions” sized to produce signals with similar amplitudes to the cortical
patches (SI Appendix, section SI I). For cortical patches with an average area
of 175 mm2, this sizing procedure resulted in 209 subcortical subdivisions
with volumes ranging from 175- to 1,800- mm3 (Fig. 1B). Regions with higher
current density have finer divisions (higher resolution) than those with low
current density (e.g., ∼200-mm3 divisions in striatum vs. ∼1,795-mm3 divi-
sions in thalamus).

Forward Solutions. We derived a three-compartment boundary-element
model from the MRI data and numerically computed forward solutions
using the MNE software package (68, 69). To account for the differ-
ent sensor types, units, and noise levels in the M/EEG measurements,
we whitened the gain matrices, using an estimate of the observation
noise covariance matrix (69). For MEG simulation studies, we set the noise
covariance matrix to be similar to typical resting eyes-open recordings,
Q = diag([g2, g2, m2, . . . ,g2, g2, m2]), where g = 2.5 fT/cm and m = 10 fT.
For M/EEG experimental studies, we estimated noise covariance matrices
from the resting eyes-open data. To account for differences in current
strength across brain divisions, we scaled gain matrices for each division
by the regional current strengths (71) (SI Appendix, section SI I). We con-
structed the reduced-dimensionality M/EEG gain matrices Gk for each divi-
sion k ε {B : 1, 2, . . . , K}, using a singular value decomposition, retaining
components to capture >95% of the total spectral energy (36, 70).

Analysis of Forward Solutions. We simulated the field pattern yk for a divi-
sion k by activating the most significant eigenmode of Gk with a unit
current. We assessed the degree to which the field pattern yk could be
explained by some distribution of currents in a region R⊂B (k /∈ R) by
fitting GRxR to yk, using the regularized l2 minimum-norm criterion. We

computed x̂R = G
′
R

(
GRG

′
R + λ2I

)−1
yk, setting the regularization param-

eter λ2 to 1/9. We then quantified the goodness of fit between the
best-fitting field patterns, ŷR = GRx̂R and the original pattern yk, as
1 − ||yk − ŷR||2/||yk||2. For visualization of the fields, we dewhitened ŷR
and mapped it to a virtual grid of 304 magnetometers distributed evenly
across the Elekta helmet (72).

We used principal angles (27, 28) to quantify the correlation between
putative field patterns arising from currents in two nonoverlapping regions:
R1⊂B andR2⊂B. We define a configuration of currents in a collection of
patches or subdivisions as a combination of eigenmodes from those patches
or subdivisions. Any putative field pattern arising from a configuration of
currents in R1 is defined by some subset UR1 of the eigenmodes of the
gain matrix GR1 . If GR1 comprises n1 eigenmodes, there are 2n1 − 1 sub-
sets of eigenmodes {UR1} collectively corresponding to all possible current
configurations within R1. Similarly, for region R2, the gain matrix GR2
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comprises n2 eigenmodes, and there are 2n2 − 1 subsets of eigenmodes
{UR2} collectively corresponding to all possible current configurations
within R2. The degree to which a field pattern arising from any current
configuration in R1 can be explained by a field pattern arising from any
current configuration inR2 is specified by the set of principal angles {Θ1,2}
between each subset of {UR1} and each subset in {UR2}. We computed

the set of principal angles {Θ1,2} across all (2n1 − 1) (2n2 − 1) combinations
of subsets of {UR1} and {UR2}.

The principal angles analysis does not account for the gains of the
eigenmodes. To ensure that the principal angles histogram is not biased
toward smaller eigenmodes, we confined the histogram to include only
those subsets of {UR1} and {UR2} that contained the largest eigen-
modes from each patch or subdivision. To illustrate how the principal
angles correspond to field patterns with varying levels of similarity, we
selected a representative combination of eigenmodes UR1 and UR2 hav-
ing angles 35◦, 45◦, 60◦, and 86◦; generated the field y1 = UR1 ; pro-
jected (minimum l2-norm) y2 = UR2 xR2 to y1; and plotted the y2 most
similar to y1.

Analysis of Resolution Matrices for Inverse Solutions. We used the resolu-
tion matrix to assess performance of the minimum l2-norm (MNE) and SP
inverse solutions. The MNE solution for the distributed source space B,

with prewhitened gain matrix GB , is WMNE (GB) = RG
′
B

(
GBRG

′
B+λ2I

)−1
.

We specified the prior source covariance R so that Tr(GBRG
′
B) = Tr(I) = N,

set λ2 = 1/9 (72), and computed the MNE resolution matrix KMNE(GB) =

WMNE(GB)GB (30). We used a similar process to compute the MNE reso-
lution matrix KMNE(GBr ). The SP estimates for the source space Br , with
prewhitened gain matrix GBr , were obtained using the procedure in SI
Appendix, section SI III. We characterized the SP resolution matrix KSP empir-
ically. We simulated unit currents in the most significant eigenmode of each
brain division i and used the gain matrix GBr (i) to generate the noiseless
(prewhitened) MEG fields yi . We then used SP to estimate the source loca-
tion qi = SP(yi, GBr , L = 1) and computed the source current β{qi , i}, using
a least-squares fit of GBr (qi )

to yi . The estimated qi and β{qi , i} together
specify the locations and magnitudes of the nonzero elements of the empir-
ical resolution matrix KSP. As L = 1, only the qith element of column i of
KSP is nonzero. In the resolution matrices, we ordered the sources accord-
ing to their physical proximity to each other. Therefore, when sources are
estimated accurately, the resolution matrix has a diagonal appearance. We
used the resolution matrices KMNE and KSP to compute the spatial disper-

sion SDi =
√∑N

k=1 (dki · ||Kki||)2/
∑N

k=1 ||Kki||2 and the dipole localization
error DLEi = dji , where j = arg maxk{||Kki||} and dji is the distance between
centroids of divisions j and i (31).

Source Estimation Algorithm. At each hierarchy level, we performed source
estimation using the SP algorithm in ref. 36, modified to use relaxed mutual
coherence thresholds. The mutual coherence thresholds were set equal to
the mean-max correlation among gain matrices from neighborhoods of
brain divisions under consideration. Our relaxed mutual coherence thresh-
olds adapt to changing levels of gain matrix correlation across hierarchy
levels, giving correlation thresholds in the ∼0.75−0.90 range. Additional
details are in SI Appendix, section SI III, Table S2, and Fig. S4.

Somatosensory Evoked Response Simulations. We simulated activity in five
regions of interest: a 1-cm3 volume in the left somatosensory thalamus
including the ventral posterior area and four ∼600- to 800-mm2 surface
patches in primary and secondary somatosensory cortices and the poste-
rior parietal area. The simulated cortical current time courses were Gabor

atoms of the form Ae−(t−to )/2σ2
, where A, to, and σ denote the amplitude,

delay, and width of the evoked component and were set based on previ-
ous studies (15, 36, 58). The simulated thalamic current time course con-
sisted of 10 repetitions of cos2(2 ∗ π ∗ f ∗ t + φ) with f = 100 Hz, φ=π/3,
duration 15 ms, and repetition period 25 ms. We simulated currents over
a time range of 0−250 ms, with 3-kHz sampling rate. We calculated the
MEG signals using the MRI-based forward model and added white Gaussian
observation noise with mean zero and variance specified to achieve a SNR
of 7 dB.

Auditory Evoked Response Recordings. We recorded M/EEG simultane-
ously while presenting binaural broadband click trains (0.1 ms duration,
65−80 dB/nHL intensity, 110 ms interstimulus interval, 9.09 Hz click rate)
as subjects rested with eyes open (38, 73). We preprocessed the data, per-
formed stimulus-locked averaging to compute the ABR and the MLR, esti-
mated observation noise covariances using the filtered baseline recordings
(38) (SI Appendix, Fig. S8), whitened the filtered MEG and EEG data using
their respective noise covariances, and used both MEG and EEG for source
estimation. Further details are in SI Appendix, section SI IV.

Materials Availability. All code and data from this paper are shared online
on our MNE website: martinos.org/mne.
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16. Hämäläinen MS (1993) Magnetoencephalography - theory, instrumentation, and
applications to noninvasive studies of the working human brain. Rev Mod Phys
65:413–505.

17. Baillet S, Mosher JC, Leahy RM (2001) Electromagnetic brain mapping. IEEE Signal
Process Mag 18:14–30.

18. Dale A, Sereno M (1993) Improved localization of cortical activity by combining EEG
and MEG with MRI cortical surface reconstruction: A linear approach. J Cogn Neurosci
5:162–176.

19. Dale AM, et al. (2000) Dynamic statistical parametric mapping: Combining fMRI and
MEG for high-resolution imaging of cortical activity. Neuron 26:55–67.
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